存储优化(3)-mongo大表加索引

摘要

存储优化(2)-排序引起的慢查询优化中我们提到过排序对查询选择索引的影响。但是的解决办法就是增加一个索引。在线上给mongo的大表增加一个索引要慎重。在增加索引的过程中也遇到了一些问题,这边进行相关的记录与分析。

问题描述

表结构

_id,
biz_Id,
version,
name

索引

1. 主键索引
2. biz_id,version联合索引

查询语句

"query":{"find":"historyRecord","filter":{"bizId":1234567},"sort":{"_id":-1},"limit":1}}

增加一个索引

bizId,_id

增加索引过程

对于大表(该表记录数5亿),建立索引过程涉及到锁表,大量的读写操作、数据同步,肯定会影响线上的操作。所以选择在业务低谷期,建立一个background的index,这样不会锁表。
注:

mongo4.2以后优化了建立索引过程,不需要background参数了https://docs.mongodb.com/manual/reference/command/createIndexes/#dbcmd.createIndexes

创建完索引后,通过客户端连接,查看执行计划,始终扫描一行。完美,走到了新的索引。

"executionStats" : {
       "executionSuccess" : true,
       "nReturned" : 1,
       "executionTimeMillis" : 0,
       "totalKeysExamined" : 1,
       "totalDocsExamined" : 1

然后再观察几天慢sql,大吃一惊发现还是存在慢查询,但是相同的语句,放到客户端查询的时候,又是执行的新索引。查看system.profiles中慢日志

当时这条慢查询语句走的是cached_plan.
在这里插入图片描述
也就是说,走的是plan cache,已经缓存的执行计划。

那是不是因为这个索引是后来加的,plan-cache还没有更新的。清理掉执行计划缓存,执行操作

db.historyRecord.getPlanCache().clear()

继续观察,发现并没有什么用。百思不得其解,在深入解析 MongoDB Plan Cache找到一些思路,MongoDB的执行计划

在这里插入图片描述
其中扫描N次中N是10倍的执行计划缓存的索引扫描次数。

看了下缓存计划中的

db.getCollection('historyRecord').getPlanCache().listQueryShapes()
    {
        "query" : {
            "bizId" : "xxxxx"
        },
        "sort" : 0
            "_id" : -1.0
        },
        "projection" : {}
    },

而该查询使用"bizId,version"索引,而bizId="xxxx"下面的索引值是100左右。我们的数据分布,bizId,version在100以内的可能是95%,只有5%的在100以上,这会给索引判断造成误判。

总结

最后解决是通过强制索引来避免索引误判,当然也可以将排序改成

sort({bizId:-1,_id:-1})

这样也不会误判

总结一下:

  1. 大表加索引,需要确保不会block表的其他操作,尽量选择闲时,background方式创建
  2. 增加完索引后,需要check索引是否发挥作用,只是通过explain有可能误判,还是需要结合数据库的slowlog来判断
  3. 同一个查询数据库也不总是使用一个索引,会根据查询情况进行调整。需要结合plan cache等情况来分析
  4. 修复数据库索引判断错误可以通过强制索引,或者调整语句引导数据库作出正确的判断。

参考

https://mongoing.com/archives/5624

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie
应支付0元
点击重新获取
扫码支付

支付成功即可阅读